

Environmental Protection Agency

Main achievements in Danish Water Sector

AGMA September 6th, 2022

Henrik Dissing International Team, Executive Office Danish Environmental Protection Agency

Environmental Protection Agency

Some figures about Water in Denmark, including from Europe's Water in Figures (2017) and EEA Assessment of Water **Resources Across Europe** (2021)

Water flows - 2016

Environmental Protection Agency

Europe's water in fig

An overview of the European drinking v and waste water sectors

2017 edition

Figure 16: Average dally consumption per person

Environmental Protection Agency

Europe's water in

An overview of the European drinks and waste water sectors

2017 edition

Figure 19: Average distribution losses in percentages

EEA Report No 12/2021

Ministry of Environment of Denmark

Environmental

Water resources across Europe confronting water stres Map 5.2 updated assessmen

Areas in Europe with additional water stress in future under a temperature increase of 3 °C

Environmental Protection Agency

Water resources across Europe confronting water stress: an updated assessment

Environmental Protection Agency

Regulatory Milestones

Coherent Danish water management

Legislation and administration

The regulatory instruments Incentives for enhanced performance and innovation

- 1970-80's: Environmental thresholds and quality standards
- 1990's: Economic incentives : levies on discharges and energy comsumption
- > 2000: Water Framework Directive
- 2000-10's : Corporatization, Efficiency requirements, economic benchmarking, environmental benchmarking

+ Technology development support schemes

Pillars of NRW regulation

1987: Environmental Protection Act

Mandatory water metering (1996: water meters at all household connections)

1994: Non-Revenue Water Penalty Tax

10% threshold, after that utilities must pay approx. 1 Euro per 1000 L water leaked

2010: Water Sector Act

Economic efficiency requirements, corporatization

2021: Revised Drinking Water Directive

Reporting leakage/NRW on distributed water for larger utilities

Danish average, 5,51% NRW

Administrative tools to reduce water consumption

Environmental Protection Agency [Titel på præsentation] Page13

Based on DANVA, "Vand i tal" – 2018 edition

Separation between utilities and municipalities in 2010

- Municipal water and wastewater utilities were separated and utilities were to act as distinct entities with own accounting and balance sheets from 2010
- Independent entities with ring-fenced economies allowing for long-term economic approach
- Water tariff could no longer be used as a tool to fund other municipal projects (infrastructure, social, welfare)
- Increased possibility of benchmarking "like units"

Environmental Protection Agency

CAPEX vs OPEX

A market requesting low CAPEX at the expense of high long-term OPEX and high reinvestments costs is not economically viable for society

This IS a call for joining forces, but ALSO a call for taking on a long-term horizon in the business considerations.

Benchmarking of the water sector AND Water Sector Target (2020)

Based on data provided voluntarily by:

- **105 water supply companies** (75% of drinking water sold)
- 81 wastewater companies (87% of wastewater received)

Danish wastewater sector expect to be:

energy neutral before 2030

The total water sector expect to be:

climate neutral before 2030

Water supply sector is already climate positive

Water utilities' share of total electricity consumption

Anticipated climate foot print

Anticipated energy consumption

Emissions factors

Replace the right energy sources

Year	EF(Electricity), kg/kWh	EF(district heating), kg/kWh	EF(Oil), kg/kWh	EF(Natural gas), kg/kWh
2019	0.118	0.068	0.270	0.205
2020	0.111	0.059	0.270	0.205
2025	0.050	0.039	0.270	0.205
2030	0.012	0.032	0.270	0.205
2035	0.012	0.032	0.270	0.205

Danish Environmental Protection Agency

Climate gas emisssion from Waste Water treatment 2020

Environmental Protection Agency

Achievements in the water cycle

Groundwater

In Denmark we drink untreated groundwater

- 99% groundwater (almost no surface water, desalination etc.)
- Prevention rather than treatment
- Mapping and protection
 - Geophysical mapping methods
 - Geophysical database
 - World-class data processing tools and protocols
 - Innovative 3D geological modelling software

GAP

Groundwater Architechture Project v. Stanford University, California

The GAP Project has developed a new data management system, which will give input to multiple point geo-statistical algorithms for hydro-geological models. Methods will be developed to quantify uncertainties in 3D hydro-stratografic models. 3 pilotprojects will deliver data froum groundwater mapping in California.

Partners: I-GIS, Rambøll A/S, Aarhus Universitet, Stanford University.

Budget: Total 14 mio. kr. MUDP: 4 mio. kr.

Time: 2018-2020

Environmental Protection Agency

Achievements in the water cycle

Water Leakages / NRW in Water Distribution

5. september 2022

Two main achievements based on comprehensive Automatization: Water Leakage reduction (losses av 7%) and energy-efficient WWTPs

Pressure Zone Management – Highly improved operations and maintenance

Leakman project – a showcase for water leakage reduction

OrEO

Cost-efficient Monitoring of Spill-overs and LAR-solutions with Smart Meters

The Objective of the project was to develop a solution, which enables monitoring of spillover constructions and LAR Solutions by use of Smart Meters. Data was connected wireless via IoT (Internet of Things)-Technology and online cloud-based IKT (Information- and Communication) Technologoy for realtime monitoring of the response of the infrastructure to various situations.

Partners: Informetics Aps, Aarhus Vand A/S, Aalborg Universitet, Montem A/S, Informetcs Aps.

Budget: Total 6.709.192 mio. kr., Contribution from MUDP: 4.198.241 mio. kr. Period: 2018-2020

mudp

DONUT

Intelligent monitoring and management of the full water cycle

The aim of this project was to develop and commercialize a solution, which generates data from the entire water cycle in a cost-efficient manner and convert these data to information and knowledge, which utilities and authorities can use actively in the their decision support systems.

Partners: Aarhus Water Utility, Water Center South, Aalborg University, Montem A/S, Informetics Aps, Aarhus Municipality

Budget: Total 23,6 mio. kr. IFD: 14,6 mio. kr. Period: 2018-2021

https://innovationsfonden.dk/da/presse/dansk-vandteknologi-i-front-med-intelligent-styring-og-overvaagning

Environmental Protection Agency

Achievements in the water cycle

Water Use Efficiency

Water flows - 2016

Reference: GEUS, 2019, Grundvandsovervågning 1989 - 2017

Clean water comes at a price

A HOUSEHOLD'S ANNUAL LIVING EXPENSES - SELECTED CATEGORIES

Environmental Protection Agency Page34

A key driver: energy prices

Water Consumption at Pig Slaughteries

Danish Ministry of the Environment and Food , Nature Agency

Environmental Protection Agency

Achievements in the water cycle

Wastewater

5. september 2022

From WWTP's to WRRF's – the Danish case

1989: 1.980 WWTP's > **30 PE**

2018: 634 WWTP's > 30 PE (746 plants in total)

Total WW discharges : 614 mill. m³

35 largest WWTP treat 50 % of total wastewater nationally Total discharges: N: 3100 t P: 300 t Org. Matter: 2200 t.

2020: Avg. energy selfsufficiency rate: 70%

Territory of Denmark: 16,580 sq miles (42,943 km2) (1/10th of California) Denmark 2020: 5,6 mio inhabitants

Late 1980's: thresholds on Nitrogen, Phosphorus, Org. matter.

Results: 80-90 % reduction in discharges

1990's : Levies on discharges (N, P, Org matter) and energy consumption

Results: 99+% WWTP's have biological treatment

Focus on energy consumption throughout the waste water sector

3 Action Plans 1987-1992

Substantial investments in WWTPs; Centralisation / Technical Consolidation; Biological treatment Lake Arre catchment: From 20 to 6 WWTPs

From WWTPs to Energy Factories

Environmental Protection Agency

Achievements in the water cycle

Digitalization

5. september 2022

Digitalization – three distinct levels

Smart Water - Significant Opportunities and Potential for Better Results and Highly Improved Efficiency - Major Challenges

- Increased Efficiency, Increased Speed, Improved Understanding, Better Performance, Better and more Precise Results
- Increased automation, improved analysis, Al solutions Improved Asset management, Field Staff Management Operations and Customer Services
- Foundation for Increased Effectiveness, more data for modelling, scenarios, planning, monitoring, evaluation,
- Leakage Reduction, Drinking Water Quality and Improving Health, Reducing pollution events
- Towards Integrated Solutions and Increased Effect; May lead to change of roles and responsibilities! Innovation based on partnerships.

45

Utilities in the U.S., Canada, Australia, and Europe (representing 31 countries) currently manage US\$2.9 trillion in water, wastewater and stormwater assets, which provide critical infrastructure services to over 822 million people, globally. Bluefield's forecasts indicate that advanced asset management solutions will save these utilities US\$1.2 billion in annual CAPEX savings in 2018 and scale to US\$7.3 billion in annual savings by 2027.

Exhibit: CAPEX Savings by Country, 2018-2027 (Annual and Total)

LOGIN

REGISTER

Savings 0,3-0,7% of Assets Value

Source: Bluefield Research

Digitalization

Main phases of Digitalization in the Danish Water Sector:

* Automatization of Proces Management at Utilities: significant results reg optimization of resources use

* Sector-wide dialogue reg Digitalization including utilities, business, research and authorities, led by Danish EPA: catalogue of 25 ideas for new initiatives

* A number of development projects, financed by Government Programs or Utilities/Companies own investments: new concepts and solutions reg Proces Management at Utilities and Industries and Environmental Quality of recipients, eg. Manmagement of Overflows

* Environmental Data Management setup: the Danish Environmental Portal

- * Increased focus on Asset Management
- * Recently, more focus on AI applications

The Digitalization Value Chain – An entire Ecosystem

The Environmental Portal -

Nationwide data on the natural environment – service to citizens, companies and regulators

Waste water and rainwater discharges

150 organisations contributing data

5,7 mio. yearly access by users

Availability of sensors – DRAFT

	WWTP	Sewer System	Surface Water	Drinking Water	
Level					Mature sensors
Flow	Ì				Analyzers
Precipitation		-		i i i i i i i i i i i i i i i i i i i	Limited experience
Temperature					Not available
Pressure	1				Not relevant/mentioned
pH					
Conductivity	į				
Salinity					
Redox	ļ				
Dissolved Oxygen					
Tuebidity					
Dissolved Solids					

Table 3: Current availability of sensors for physical and simple chemical parameters

5	WWTP	Sewer System	Surface Water	Drinking Water		
Level					Mature sensors	
Flow					Analyzers	
Precipitation					Limited experience	
Temperature					Not available	
Pressure					Not relevant/mentioned	
рН						
Conductivity						
Salinity						
Redox	Į.					
Dissolved Oxygen						
Turbidity						
Dissolved Solids			1			

Table 5: Physical and Simple Chemical Parameters - Probable Availability 3-8 Years from Now

Availability of sensors – DRAFT

	WWTP	Sewer System	Surface Water	Drinking Water		
Ammonia				*	Mature sensors	
Nitrate					Analyzers	
Chloride					Limited experience	
Sodium					Not available	
Calcium					Not relevant/mentioned	
Phosphate						
Total-N						
Total-P						
Suspended solids						
Sludge blanket						
H ₂ S			2			
N ₂ O						
Methane						
CO2						
BOD, COD, TOC						
Chlorophyll a						
E. coli						
Phenols						
Cyanide						
Hydrocarbons						
Heavy metals						
РАН						
Micro plastics						

Table 4: Current availability of sensors for Advanced Chemical and Biological Parameters

	WWTP	Sewer System	Surface Water	Drinking Water	
Ammonia					Mature sensors
Nitrate					Analyzers
Chloride					Limited experience
Sodium					Not available
Calcium	6				Not relevant/mentioned
Phosphate					
Suspended solids					
Sludge <mark>blan</mark> ket					
H ₂ S					
N ₂ O			,		
Methane					
C02					
BOD, COD, TOC					
Chlorophyll a					
E. coli					
Phenols			-		
Cyanide					
Hydrocarbons					
Heavy metals					
PAH					
Micro plastics					

Table 6: Advanced Chemical and Biological Parameters - Probable Availability 3-8 Years from Now

Environmental Protection Agency

Achievements in the water cycle

Climate Change Adaptation

Water Smart Cities

Water Utilities co-operating on Water Management

Severe Cloudbursts causes the sewage system to send spill-overs to rivers, coastal areas and into the basements of buildings and houses. Development of new state-of-the-art water technology will give water utilities and public authorities a new tool for a more coherent planning and management of the water – whether caused by cloudbursts or floods.

Partners: DTU, DHI, Krüger A/S, Rambøll Danmark A/S, DMI, 3 Vand, Innovation og Udvikling, HOFOR, , AArhus Vand, Vandcenter Syd, BIOFOS, Forsikring & Pension

Budget: Total 28,3 mio. kr. IFD: 12,3 mio. kr. Periode: 2016-2019

https://innovationsfonden.dk/da/case/smart-vandhaandtering-til-smarte-byer/

Environmental Protection Agency

2030 Look-out

5. september 2022

More challenges ahead?

Contaminants in groundwater and surface water: pesticide residues , PFOS, etc.

Micropollutants: pharmaceuticals, chemical residues in household waste water, antimicrobial resistance

Extend digitalization to all utilities

Increase benefit from AI application and advanced Digitalization

Climate Change Adaptation

Looking Ahead – EU initiatives

EU Green Deal Zero Emissions Action Plans

EU Taxonomy – implications for utilities

5.1. Construction, extension and operation of water collection, treatment and supply systems

5.2. Renewal of water collection, treatment and supply systems

5.3. Construction, extension and operation of waste water collection and treatment

5.4. Renewal of waste water collection and treatment

EU Horizon Europe partnership: Water4All

Thank you for listening !

Contact information: Henrik Dissing +45 41782030 hedis@mst.dk

